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SUMMARY

_ae current state of the art of predicting and minimizi%ng lift-induced

drag at supersonic speeds as practiced at the Langley Research Center is

reviewed. Numerical methods of implementing the linearized theory for use

on high-speed electronic computers are outlined, and applications of the

methods to wings, wing-body combinations, and complete configurations are

studied. It is concluded that the techniques are generally applicable in

the supersonic speed range at least up to a Mach number of 3 for configura-

tions employing slender bodies and thin, moderately cambered wings, as

represented by current supersonic-transport designs.

INTRODUCTION

In the past few years, a significant part of the theoretical drag-

reduction potential of warped supersonic wings (refs. 1 to 3) has been

achieved in wind-tunnel experiments (refs. 4 and 5). Successful applica-

tion of the theoretical concepts has been due in part to the imposition of

experimentally determined restraints on camber surface severity (refs. 4

and 6). Experimental studies (refs. 7 to 9) have also shown the manner in

which wing warp may be incorporated into complete airplane configurations

so as to preserve and enhance the benefits of the wing design. Another

recent development has been the implementation of the theory by numerical

methods programed for high-speed computers (refs. l0 to 12). These pro-

grams provide a versatile set of tools for rapid estimation and optimiza-

tion of wing aerodynamic characteristics. The purpose of this paper is to

review the nature of the theory and numerical methods of implementation and

to discuss the findings of experimental studies regarding the applicability

of the methods to wings alone, towing-body combinations, and to complete

configurations.

SYMBOLS

CD

AC D

CL

drag coefficient

incremental drag coefficient due to lift

lift coefficient
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CL,des

CL_opt

Cm

Cm,o

Cp

Cy

C r

(L/D)max

M

R_

W

x _

lift'sc6efficient for which the warped wing surface is designed to

produce a minimized drag

lift coefficient yielding maximum lift-drag ratio for a theoretically

optimum surface

pitching-moment coefficient about the 0.45_ station

pitching-moment coefficient at zero lift

pressure coefficient

side-force coefficient

root chord

mean aerodynamic chord

maximum lift-drag ratio

Mach number

Reynolds number based on mean aerodynamic chord

upwash velocity

wing shear parameter (see fig. 6)

camber-surface ordinate

angle of attack

DISCUSSION

Numerical Analysis of Lifting Surfaces

An illustration of the representation of a wing in the numerical analysis

is given in figure 1. A simplified analysis may be made for the pair of lifting

elements shown at the left of the figure. In generating lift, the forward ele-

ment of the pair creates a downwash field between trailing tip vortices and an

upwash field in the remainder of the Mach cone region. Lift generated by the

rearward element depends on its attitude relative to the upwash created by the

forward element. Linearized theory provides a solution for the lifting charac-

teristics of an element in the flow field created by one or more forward ele-

ments, each generating a given lift. The upwash field at the element is related

directly to the lift of the forward element and only indirectly to the angle of

attack required for that lift; thus, the case in which the required angle is

related to a specified load is termed the direct solution. A complete wing

represented as an array of elements is shown at the right of figure 1. This
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drawing is schematic; in actual practice, many more elements would be used. In

the direct solution_ lifting pressures are assigned to each of the elements and

the required surface slopes are found, in the inverse solution, the surface

slopes are specified and the resulting lifting pressures are found. The inverse

solution is more complex but may be handled numerically, provided the calcula-

tions are made by following a precise routine - that is, by working from the

forward to the rearward elements.

It may be observed that the greatest benefits of warping are derived for

wings with leading edges swept behind the Mach line. The leading-edge elements,

acting in the upwash field of the forward elements, generate fairly large

amounts of lift on a forward-facing slope_ and thus produce a thrust component

rather than a drag component. However_ even for planforms for which the drag

reduction is small, the use of twist and camber is worthy of investigation_

since it can help reduce the problem of the supersonic aerodynamic-center shift.

Figures 2 and 3 illustrate the design and analysis tools provided by the

numerical solutions of the theory. An example of the direct problem is shown

in figure 2. A planform and a desired loading distribution (represented by the

arrows) are specified, and a surface which will support that loading is deter-

mined. Symbols on the plot represent wing forces, and inset sketches show the

corresponding shapes of the camber surfaces as determined by use of the method

of reference lO. The circular symbol represents a solution for the surface

required to yield an arbitrarily selecteddistribution of load at a specified

lift coefficient. The somewhat unusual loading distribution selected is only

one of many possible distributions.

By determining the solutions for three or more specific load distributions

and by usiug a numerical evaluation of the mutual interference of loadings and

surfaces_ an optimum combination of loadings for minimum drag is obtained. The

square symbol represents the solution for a surface defined by an optimum com-

bination of three loadings. The solid line shows the variation of drag incre-

ment with lift for a wing which is allowed to assume the optimum shape at all

lift coefficients. Since a real wing must have a fixed surface shape, this

curve forms a lower-bound envelope of possible drag reduction for a given

planform.

Because of necessary departures from the idealized optimum camber surfaces

in airplane design, it is advantageous to have a means of evaluating arbitrarily

selected shapes for use in trade studies. In figure 3 is shown an example of

the inverse problem treated in references ll and 12. A planform and a cambered

surface shape are given, and the lift loading and the resultant forces are

determined. The circular symbol represents the machine solution for a wing

of specified shape at a reference attitude of 0 °, and the corresponding inset

sketch shows the distribution of lifting pressures. A special case of c_ber

surface shape is a flat plate. The solution for the lifting pressures and

forces on a flat wing having the same planform as the wing of specified shape

is represented by the dashed line. These two solutions may be combined to

define the pressures and drag for the cambered wing of specified shape as the

angle of attack and lift coefficient are varied. The solid line represents
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the combined solution and the inset sketches along this line illustrate the

variations in wing loading with lift coefficient.

The computer programs thus serve the following purposes:

(1) To define a lower bound of possible drag reduction and describe the

theoretical lower-bound shapes

(2) To define the loadings and lift-drag characteristics of arbitrarily

selected wing shapes

(3) To describe the loadings and lift-drag characteristics of flat wings

having the same planform as the wings of specified shape, •the lift-drag char-

acteristics being a base point for judging the benefits of twist and camber

In current configuration analyses, the lifting effects for an infinitely

thin wing calculated by use of these programs are added directly to the effects

of thickness evaluated independently by use of machine programs based on

supersonic-area-rule concepts (ref. 13). Thus, the possibility of mutual

interaction between lift and volume is not considered. In addition, no account

is taken of the leading-edge suction forces which, although important at sub-

sonic speeds, have not been found to exist to any appreciable extent at super-

sonic speeds. The presence of a detached leading-edge vortex flow, which could

influence to some degree the loadings and forces at supersonic speeds, is

similarly neglected.

Application of Analysis Methods

Application to win6s alone.- An example of the use of wing warp to provide

a reduction in drag at lifting conditions and an improvement in trim character-

istics is shown in_figure 4. An investigation of the semispan wing shown at

the upper left of the figure was conducted at a Mach number of about 2 and a

Reynolds number of 4.4 × 106 in the Langley 4- by 4-foot supersonic pressure

tunnel (ref. 4). A warped wing and a flat wing of the same planform were inves-

tigated. The experimental results are compared with theoretical curves for

these two wings and with a theoretical curve for a wing defined by an optimum

combination of loadings. The drag of the warped wing is somewhat higher than

that of the flat wing at zero lift, but is significantly lower than that of the

flat wing at the higher lift coefficients. The fact that the experimental

results fail to achieve the theoretical drag levels for the optimum surface is

to be expected, inasmuch as an infinite incidence at the root chord is unreal-

istically assumed for the theoretically optimum surface. Although the optimum

loading theory indicates a maximum lift-drag ratio for a llft coefficient of

about 0.16, it was found that a wing designed for a theoretically minimum drag

at that lift coefficient actually performed little better than the flat wing.

Experimental evidence has shown that better results are obtained when the lift

for maximum lift-drag ratio is due in part to the warped surface and in part

to the angle of attack of that surface. The particular warped wing surface

shown in this figure was designed to produce a lift coefficient of 0.08. In

addition, the wing employed restrictions in incidence of the root chord and in
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local loading (ref. 6). The inverse program maybe used to assure that these
departures from the theoretically optimum surface introduce no large penalties.
Figure 4 also shows that, in addition to providing for reduced drag, the wing
warping results in a more positive pitching-moment coefficient which permits
more efficient trimming of the configuration.

The necessity for realistic restraints on the severity of camber surfaces
is illustrated in figure 5. Measuredand predicted maximumlift-drag ratio
and pitching-moment coefficient at zero lift are sho_mfor a series of three
wings (from ref. 4) differing only in the degree of _arping, which is dictated
by the design lift coefficient. The design lift coefficient CL,des is refer-
red to the lift coefficient giving maximumlift-drag ratio for the theoretically
optimum wing surface CL,opt. Inset sketches show the increasing severity of
the wing surface with increases in the design lift coefficient. The highest
lift-drag ratio obtained experimentally is lower than the theoretical maximum
and occurs for a value of CL,des about half as large as that required for the
theoretical maximum. This result is probably due to the increasing inapplica-
bility of the linearized theory as the surface becomesmore highly warped. It
should not be assumedthat a ratio of CL,des to CL,opt of 0.5 is to be used
in all instances. The choice of design lift coefficient will be influenced by
the planform and the Machnumberand by momentconsiderations as well. It
should be noted that, as shownat the right of the figure, the beneficial
pitching-moment coefficient at zero lift increases steadily as the value of
CL,des/CL,°Ptl is increased from 0 to 1.O.

The linearized theory, on which the methods of twisted and camberedwing
design are based, sets specific requirements for the surface slope with respect
to the flight direction but imposes no restrictions on the slope with respect
to the lateral direction. Results from a recent experimental investigation
which illustrate the importance of lateral-slope considerations are shownin
figure 6. The models were variations of the basic wing shownin figure 4, which
had a design lift coefficient of 0.08. The wings have been sheared to produce
a flat lateral section at various stations x* along the root chord of the
wing, as shownin the inset sketch at the upper right. The variation of meas-
ured (L/D)max %_th the shear parameter x*/c r is shown, along with sketches
of the side views of the semispanwings. The experimental data indicate that
maximumperformance is attained for values of x*/c r near 0._. It would
appear that best results are obtained whenthe surface is arranged to lie in
as nearly a single plane as possible without changing the streamwise slopes.
The results of an experimental stud_ in which wing dihedral is the variable
(ref. 14) lead to a similar conclusion.

Application to win6-bodies.- An important consideration in the application

of twistedand cambered %_ng design is the manner in which wing and fuselage

are combined. Reference 7 gives maximum lift-drag ratios for wing-fuselage

combinations employing the basic cambered wing of figure 4, and these data are

presented in figure 7. Also, for reference purposes, data are presented for

a combination in which the uncambered or flat wing is used. It was previously

believed that a fuselage alined with the free stream would be beneficial in
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that it would cover up the troublesome inboard wing region having large surface

slopes. Experimental data for the first of the warped-wing--fuselage configura-

tions in figure 7 indicate, however, that the combination with a fuselage so

alined has a maximum lift-drag ratio only slightly larger than that of the flat-

wing--body configuration. Another possible way of combining the wing and fuse-

lage is to aline the fuselage with the wing root chord. As shown in figure 7,

the maximum lift-drag ratio for this combination is considerably larger than

that for the flat-wing--body configuration. The final configuration in this

figure employs a fuselage which is alined with the root chord but which has a

reflex at the wing apex and at the root-chord trailing edge. In effect, the

thickness of this configuration:, both wing and fuselage, is displaced symmetri-

cally about the camber surface defined for the wing planform. For the design

alined with the free stream and carries little or no lift. This wing-body com-

bination produced the highest maximum lift-drag ratio of the test configura-

±.ions; the ratio was about i.i larger than for the uncambered- or flat-wing_

body configuration. It would appear that such an arrangement of the configura-

tion volume preserves the distribution of wing loading prescribed by the wing

theory. Theoretical maximum lift-drag ratios evaluated by use of the mean-

camber-surface concept, which is discussed in the following paragraph, predict

reasonably well the performance gains of the last two configurations in fig-

ure 7 but fail to assess properly the penalties associated with the strean_ise

fuselage alinement.

The concept of a mean camber surface is quite useful in analyzing the char-

acteristics of a wing-bo_y configtu'ation with appreciable thickness. An appli-

cation of this kind of analysis to the prediction of interference effects for

a delta-wing--wedge-body model at .M = 2.0 (ref. 15) is shown in figure 8.

Lift-drag polars and curves for angle of attack as a function of llft coeffi-

cient are shown for a high-wing and a low-wlng configuration. The lift char-

acteristics have been estimated from program calculations for a warped surface

formed by the locus of points midway between the upper and lower model surfaces.

Since the numerical solution cannot work with discontinuous slopes, it is neces-

sary in this example to approximate the mean camber surface with a surface that

varies gradually from element to element. The step in the surface is thus

replaced by a series of ramps extending over a number of grid elements. It is

also necessary to tax the machine storage capacity in order to obtain a good

approximation of this model surface, obviously an extreme case of a warped wing

surface. The data show that the high-wing configuration has lower drag at

lifting condition than does the low-wing configuration and that the theory cor-

rectly predicts this drag. It should be noted that the mean camber surface

used to represent the high-wing model more nearly corresponds to the surface

required for an optimum combination of loads. The use of favorable-interference

concepts, as exemplified by the high-wing model, is in a sense a special case of

twist and camber. As shown at the right of the figure, the theory somewhat

overestimates the influence of the wedge in the generation of interference lift,

perhaps because in real flow the body pressure field extends some distance ahead

of the theoretically sonic leading-edge wing.

Since a mean camber surface may be used to represent the lifting effects

of a wing-body combination, it would be expected that, conversely, lifting
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effects for a theoretically determined mean camber surface would be best

retained with a symmetrical distribution of thickness above and below that

surface.

Positioning of engine nacelles or stores has an important influence on con-

figuration aerodynamic characteristics. Fairly large variations in wave drag

at zero lift can result from variations of nacelle location relative to the

wing-fuselage. As illustrated in figure 9, nacelle alinement also influences

the drag. This figure presents data from reference 8 and shows the vs_iation

of _C D for the wing-nacelle combination with alinement or cant angle at

CL = 0.16. By definition, the drag increment is zero for zero cant angle. As

shown in the inset sketch_ a nacelle-pylon installation experiences a side force

due to the flow angularity produced by the wing. A component of this force acts

in the drag direction. When the nacelle is alined with the local flow_ there

is no side force and no drag component. When the nacelle is alined with the

airplane axis or the free stream_ there is a side force normal to the nacelle

but the drag component is zero. For a cant angle larger than the flow angle,

the side-force vector reverses and considerable drag can result. Also, for

negative cant angles, the drag penalties can become large. It is interesting

to note that a thrust, not a drag, is indicated for cant angles between the free

stream and the local flow_ with the maximum thrust halfway between the two.

Setting a nacelle-pylon combination at such an angle results in somewhat higher

drag at zero lift but produces# as does a twisted or cambered wing, a reduction

in drag at design conditions. Calculations of local-flow angle is not now a

part of the machine programs, but may be handled by a graphical integration of

pressures to obtain velocity potential and a subsequent differentiation to

obtain surface velocities. When calculated surface angles are used to optimize

nacelle-pylon alinement, some correction should be made for the tendency to

overestimate flow angularity off the wing surface at the pylon location. In

the example given here the measured flow angle at the nacelle was only about

two-thirds of the predicted surface angles. These considerations are also

applicable to any vertical surfaces displaced from the airplane axis (e.g.,

outboard vertical fins). This rather simplified analysis of a complex situa-

tion has proved effective in obtaining drag reduction.

Application to complete confi6urations.- The individual elements of design

philosophy as applied to airplane components have been discussed. In this sec-

tion of the paper the integration of these elements into complete-configuration

design is considered. The supersonic-transport design of reference 9 shown in

figure lO has been derived in part from skin-friction and wave-drag considera-

tions which tend to minimize drag at zero lift. It also employs to some degree

all the design considerations previously discussed - that is, the restricted

design lift coefficient for the wing surface, the shear consideration, the

nacelle and fin alinement, and the symmetrical distribution of thickness about

the wing camber plane. In addition, for that region of the wing influenced by

the nacelle thickness pressures (the shaded area and the lower cross section)

the computed wing surface has been altered in order that the net lift distribu-

tion on the wing surface including the nacelle-induced pressures would be the

Me as that specified by the wing theory. The wing loading due to the nacelle

_v_ssure field has been calculate& and the wing mean camber surface has been
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reflexed to introduce a compensating loading. Detailed interference considera-
tions discussed in reference 16 lead to the samedesign procedure.

Shownin figure ll are the lift-drag characteristics of the optimized con-
figuration at a Machnumberof 2.6 for a tunnel Reynolds number of 4.5 × 106.
Data on the left side of the figure are for the wlng-fuselage combinations alone.
Measuredand calculated lift-drag polars are plotted for the warped-wing--body
and for a similar configuration without wing warp. For the higher lift coef-
ficients considered, the _arped-wing_bod_ is seen to provide a significant
reduction in drag. On the right side of the figure, the lift-drag polar for
the complete configuration shows the effect of the nacelles and vertical fins
added in accordance with the previously outlined design concepts. Although
there is a sizable increase of drag _,.t-. zern 1-i_+., _r_°_1°__+_ ......

siderations and wing reflex have nearly compensated for the additional nacelle

and fin wave drag and skin-friction drag for practical values of lift coeffi-

cient. Furthermore, the tunnel (L/D)max of 7-9 is for a complete configura-

tion which has substantial pitching moment at zero lift and which would be

expected to have little or no trim drag penalty. Extrapolation to full-scale

cruise flight conditions yields a value of (L/D)ma x of about 9._.

The benefits of the wing twist and camber and favorable-interference con-

siderations are not confined to a specific design point, but have been found

to extend over wide ranges of Mach number and lift coefficient, as shown in

references 9 and 17.

CONCLUDING REMARKS

The design and estimation techniques discussed herein have been shown to

be applicable in the supersonic range at least up to a Mach number of 3.0 for

configurations employing slender bodies and thin, moderately cambered wings.

Thus, if a configuration meets the requirements for efficient supersonic cruise

(a necessity for supersonic-transport designs)_ the methods may be used with

some confidence in estimating and optimizing the aerodynamic characteristics.

With configurations for which supersonic cruise efficiency is not a major con-

sideration (e.g., supersonic dash vehicles), there may be some question as to

the applicability of methods based on linearized theory.
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LIFTING-SURFACE REPRESENTATION

PAIR OF LIFTING ELEMENTS ARRAY OF LIFTING ELEMENTS

FigureI

DESIGN METHODS
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ESTIMATION METHODS
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EFFECT OF DESIGN LIFT COEFFICIENT
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EFFECT OF NACELLE ALINEMENT
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LIFT AND DRAG OF OPTIMIZED CONFIGURATION
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